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Linear	regression	model	excel

Multi	linear	regression	model	in	excel.	Simple	linear	regression	model	excel.	Log	linear	regression	model	example	in	excel.	Multiple	linear	regression	model	excel.	How	to	create	a	multiple	linear	regression	model	in	excel.	How	to	build	a	linear	regression	model	in	excel.	Nonlinear	regression	model	in	excel.	Log	linear	regression	model	excel.

This	January	2009	help	sheet	provides	information	on	multiple	regression	using	data	analysis	add-in.	Interpret	statistical	regression.	Interpreting	the	Anova	table	(often	this	is	jumped.)	Interpret	the	table	of	regression	coefficients.	Trust	intervals	for	slope	parameters.	Test	for	the	statistical	meaning	of	the	test	hypothesis	coefficients	on	a	slope
parameter.	Test	the	general	meaning	of	the	regraders.	Preparing	the	values	​​of	the	regraders.	Excel	limitations.	There	is	little	more	to	know	beyond	regression	with	an	explanatory	variable.	The	main	addition	is	the	F-Test	for	overall	fit.	Multiple	regressions	Using	data	Analysis	Add-in	This	requires	the	data	analysis	addate:	see	Excel	2007:	Access	and
activating	the	data	analysis	addictate	The	data	used	are	in	carsdata.xls	then	we	create	a	new	variable	in	cells	C2:	C6,	Home	size	cubbed	as	regressor.	Then	in	cell	C1	give	the	Cubed	Hh	Size	voice.	(It	turns	out	that	for	data	if	squared	HH	Size	has	a	coefficient	of	exactly	0.0	the	cube	is	used.)	The	calculation	sheet	cells	A1:	C6	must	look	like:	we	have	a
regression	with	an	interception	and	regressors	HH	Size	e	Cubed	HH	Size	The	population	regression	model	is:	Y	=	Î²1	+	Î²2	x2	+	Î²3	X3	+	U	It	is	assumed	that	the	u	error	is	independent	with	constant	variation	(Homoskedastic)	-	see	Excel	Limitations	at	the	bottom.	We	would	like	to	estimate	the	regression	line:	y	=	b1	+	b2	x2	+	b3	x3	we	do	it	using
the	analysis	of	add-in	data	and	regression.	The	only	modification	of	the	regression	is	to	include	more	than	one	column	in	the	X	input	range.	Note,	however,	that	the	rickers	must	be	in	contiguous	columns	(here	columns	B	and	C.)	If	this	is	not	the	case	In	the	original	data,	then	the	columns	must	be	copied	to	obtain	regressors	in	contiguous	columns.	Hit
ok	We	get	the	regression	output	has	three	components:	Table	regression	statistics	table	of	table	regression	coefficients.	Interpret	statistical	table	report	This	is	the	following	exit.	Of	great	interest	is	R	Square.	Multiple	explanation	R	0.895828	R	=	square	root	R2	R	square	0.802508	R2	adjustment	R	Square	0.605016	R2	adjusted	Used	if	more	than	one
X	Variable	Standard	Error	0.444401	This	is	the	estimation	of	the	standard	deviation	sample	of	the	u	observations	5	Number	of	observations	used	In	regression	(n)	the	aforementioned	provides	general	measures	of	good-of-fit:	R2	=	0.8025	Correlation	between	YE	Y-HAT	is	0.8958	(when	the	square	0.8025)	R2	adjusted	=	R2	-	(1-R2	*	K-	1)	/	(NK	=	.8025
-	.1975	*	2/2	=	0.6050	The	standard	error	here	refers	to	the	estimated	standard	deviation	of	the	error	term	u.	It	is	sometimes	called	the	standard	regression	error.	Ie	equal	sqrt	(SSE	/	(NK.)	It	is	not	to	be	confused	with	the	standard	Y-error	(from	descriptive	statistics)	or	with	standard	errors	of	the	of	regression	below.	R2	=	0.8025	means	that	80.25%
of	the	Yi	Yi	variation	Ybar	(its	average)	is	explained	by	the	X2i	and	X3i	regressors.	Ã,	interpreting	the	Anova	table	a	table	is	supplied.	This	is	often	jumped.	Ã,	DF	SS	MS	F	Meaning	F	Regression	2	1,6050	0.8025	4,0635	0.1975	Residue	2	0.3950	0.1975	Total	4	2.0	The	Anova	table	(variance	analysis)	divides	the	sum	of	the	squares	into	its	components.
Total	amounts	of	squares	=	residual	sum	(or	error)	of	square	+	regression	(or	explained)	sum	of	the	squares.	So	Ãž	£	i	(Yi	-	Ybar)	2	=	£	I	(Yi	-	YHATI)	2	+	Ãž	£	I	(YHATI	-	YBAR)	2	Where	Yhati	is	the	value	of	YiÃ	¢	provided	by	the	regression	line	and	Ybar	It	is	the	average	of	the	sample.	For	example:	R2	=	1	-	SS	Residual	/	Total	SS	(general	formula	for
R2)	Ã,	Ã,	Ã,	Ã,	Ã	¢	=	1	-	0.3950	/	1.6050	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	ã,	â	â	â	Ã	Ã,	Ã,	Ã,	=	0,8025	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	Ã,	is,	(equal	r2	proposed	in	the	regression	table	statistical).	The	column	labeled	F	gives	the	total	F-Test	test	of	H0:	Î²2	=	0	and	Î²3	=	0	against	ha:	at	least	one	of	Î²2	and	Î²3	not
equal	to	zero.	Apart	from:	Excel	calculates	F	this	as:	f	=	[regression	ss	/	(k-1)]	/	[residual	ss	/	(n-k)]	=	[1.6050	/	2]	/	[.39498	/	2]	=	4.0635.	The	column	labeled	meaning	F	has	the	associated	P	value.	From	0.1975>	0.05,	we	do	not	refuse	H0	to	significance	level	0.05.	Note:	Meaning	F	In	general	=	Finv	(F,	K-1,	N-K)	Ã	¢	where	K	is	the	number	of	rickers
including	HTE	interception.	Here	Finv	(4.0635,2,2)	=	0.1975.	Interpreting	the	regression	of	regression	coefficients	The	production	of	most	interests	is	the	following	table	of	coefficients	and	associated	production:	Ã,	coefficient	coefficient	St.	Error	T	Stat	P-value	P-value	Less	95%	Upper	95%	intercepted	0.89655	0.76440	1.1729	0.3616	-2.3924	4.1855
HH	size	0.33647	0.42270	0.33647	0.42270	0.7960	0.485	-1.4823	2.1552	Cubed	HH	Size	0.00209	0.01311	0.1594	0.01311	0.1594	0.8880	-0.0543	0.0585	Let	Î²J	Dende	the	Rispressor	JTH	population	coefficient	(interception,	HH	size	and	Cubato	HH	format).	Then	"coefficient"	column	gives	estimates	of	the	minimum	squares	of	Î²j.	"Standard	Error"
column	provides	standard	errors	(I.E.The	estimated	standard	deviation)	of	the	minimum	squares	BJ	estimates	of	Î²JJ.	"T	Stat"	column	offers	statistic	T	calculated	for	H0:	Î²J	=	0	v	°	HA:	Î²J	Ã	¢	​​0.	0.	This	is	the	coefficient	divided	by	standard	error.	Ã	compared	to	with	(nk)	degrees	of	freedom	where	here	n	=	5	ek	=	3.	"p-value"	column	gives	the	value	p
for	the	test	of	h0:	Î²J	=	0	against	ha:	Î²J	Ã	¢	​​Ã	¢	0	..	This	is	equivalent	to	PR	{|	T	|	>	T-Stat}	Where	t	is	a	random	variable	distributed	by	T	with	the	N-K	grades	of	freedom	and	T-Stat	is	the	calculated	value	of	the	statistic	t	indicated	in	the	previous	column.	Note	that	this	value	p	is	for	a	front	/	back	test.	For	a	unilateral	test	divides	this	value	P	per	2	(also
controlling	the	sign	of	the	T-Stat).	"Lower	95%"	columns	and	"95%	superior"	values	​​define	a	95%	confidence	interval	for	Î²JJ.	A	simple	synthesis	above	is	that	the	line	is	mounted	at	a	y	=	0.8966	+	0.3365	*	x	+	0.0021	*	Z	A	confidence	intervals	for	inclination	coefficients	95%	confidence	interval	for	angular	coefficient	is	Ã©Â22	Ã©Â22	ocita	excel
(-1.4823,	2.1552).	excel	calculates	this	as	b2	±	t_.025(3)	×	if(b2)	=	0.33647	±	TINV(0.05,	2)	×	0.42270	=	0.33647	±	4.303	×	0.42270	=	0.33647	±	1.8189	=	(-1.4823,	2.1552).	other	trust	intervals	can	be	obtained.	For	example,	to	find	99:%	confidence	intervals	in	the	regression	dialog	box	(in	addition	of	data	analysis,)	check	the	trust	level	box	and	set
the	level	to	99.%	test	hypothesis	of	zero	slope	coefficient	"(test	of	hypothetical")	the	hh	size	coefficient	estimated	standard	error	of	0.4227,	0.7960	t-statistic	and	0.5095	p-value.	It	is	therefore	statistically	insignificant	at	the	meaning	level	α	=	.05	as	p	>	0.05.	the	hh	size	cubed	coefficient	estimated	standard	error	of	0.0131,	0.1594	t-statistic	and	0.8880
p-value.	It	is	therefore	statistically	insignificant	at	the	meaning	level	α	=	.05	as	p	>	0.05.	there	are	5	observations	and	3	regressors	(intercept	and	x)	so	we	oiamo	t(5-3)=t(2).	For	example,	for	hh	size	p	=	TDIST(0.796,2,2)	=	0.5095.	test	hypothesis	on	a	regression	parameter	here	we	test	if	hh	size	has	coefficient	β2	=	1.0.	example:	h0:	β2	=	1.0	con	ha:
β2	∞	1.0	at	the	meaning	level	α	=	05	then	t	=	(b2	-	h0	value	of	β2)	/	(standard	error	of	b2	)	=	(0.33647	-	1.0)	/	0.42270	=	-1.569.	using	the	p-value	p-value	approach	=	TDIST(1.569,	2,	2)	=	0.257.	[here	n=5	and	k=3	so	n-k=2].	do	not	reject	the	hypothesis	at	.05	level	since	the	value	p	is	>	0.05.	using	the	critical	approach	of	the	value	we	calculated	t	=
-1.569	the	critical	value	is	t_.025(2)	=	TINV(0.05,2)	=	4.303.	[here	n=5	and	k=3	so	n-k=2].	therefore	do	not	refuse	the	hypothesis	null	at	.05	level	from	t	=	|-1.569|	<	4.303.	integral	test	of	the	meaning	of	the	parameters	of	the	regressions	we	test	h0:	β2	=	0	and	β3	=	0	versus	has:	at	least	one	of	the	β2	and	β3	is	not	zero.	from	the	table	anova	the
statistics	F-test	is	4.0635	with	p	value	of	0.1975.	Since	the	p	value	is	not	less	than	0.05	we	do	not	refuse	the	hypothesis	anything	that	the	regression	parameters	are	zero	at	the	meaning	level	0.05.	Concluding	that	the	parameters	are	statistically	insignificant	at	the	meaning	level	0.05.	Note:	meaning	f	in	general	=	FINV(F,	k-1,	n-k)	where	k	is	the
number	of	regreditors	including	hte	interception.	here	FINV(4.0635.2,2)	=	0.1975.	value	of	y	regressors	consider	the	case	in	which	x	=	4	in	which	case	cubed	hh	size	=	x^3	=	4^3	=	64.	yhat	=	b1	+	b2	x2	+	b3	x3	=	0.88966	+	0.3365×4	+	0.0021×64	=	2.37006	excel	limitations	excel	limits	limits	limit	the	number	of	regressors	(only	up	to	16
regressors.)?	excel	requires	that	all	regressor	variables	be	in	adjacent	columns.	you	may	need	to	move	columns	to	ensure	this.	For	example.	if	the	regressors	are	in	columns	b	and	d	it	is	necessary	to	copy	at	least	one	of	the	columns	b	and	d	so	that	they	are	adjacent	to	each	other.	standard	excel	errors	and	statistics	and	p	values	are	basedassumption
that	the	error	is	independent	with	a	constant	changeExcel	does	not	provide	alternances,	such	as	heteroskedastic-robust	or	standard	autocorrelations-robust	and	t-statistic	and	p-values.	You	need	more	specialized	software	such	as	STATA,	EVIEWS,	SAS,	LIMDEP,	PC-TSP,	....	For	more	information	on	how	to	use	Excel,	please	go	to	We	use	Excel	to	adapt
the	following	straight	line	model	to	data	in	example	5.4.1.\[y	=	\beta_0	+	\beta_1	x	onumber\]	Enter	data	in	a	spreadsheet	as	shown	in	Figure	5.6.1	.	Depending	on	your	needs,	there	are	many	ways	you	can	use	Excel	to	complete	a	linear	regression	analysis.	We	will	consider	three	approaches	here.	If	all	you	need	are	values	for	the	slope,	\(\beta_1\),	and
the	interception	y,	\(\beta_0\),	you	can	use	the	following	functions:	=	intercept	(known_y's,	Know_x's)	=	slope	(known_y's,	Know_x's)	where	Know_y's	cell	is	the	range	of	cells	that	contain	the	signals	(y),	and	known_	A7)	Excel	returns	the	exact	calculation	for	the	slope	(120.705	714	3).	In	order	to	obtain	slope	and	interception,	along	with	additional
statistical	details,	you	can	use	data	analysis	tools	in	the	Data	Analysis	ToolPak.	ToolPak	is	not	a	standard	part	of	Excel	instillation.	To	see	if	you	have	access	to	the	Analysis	ToolPak	on	your	computer,	select	Tools	from	the	menu	bar	and	search	for	the	Data	Analysis	option....	If	you	don't	see	data	analysis...,	select	Add-ins...	from	the	Tools	menu.	Check
the	box	for	the	ToolPak	Analysis	and	click	OK	to	install	them.	Select	Data	Analysis...	from	the	Tools	menu,	which	opens	the	Data	Analysis	window.	Scroll	through	the	window,	select	Regression	from	the	available	options	and	press	OK.	Place	the	cursor	in	the	box	for	the	Input	Y	range	and	then	click	and	drag	the	B1	cells:	B7.	Place	the	cursor	in	the	box
for	the	Input	X	range	and	click	and	drag	the	A1	cells:	A7.	Since	the	A1	and	B1	cells	contain	labels,	check	the	label	box.	Including	labels	is	a	good	idea.	Excel's	summary	output	uses	the	x-axis	label	to	identify	the	slope.	Select	the	radio	button	for	the	output	range	and	click	any	blank	cell;	this	is	where	Excel	will	put	the	results.	Click	OK	generates	the
information	displayed	in	Figure	5.6.2	.	Figure	5.6.2	:	Exit	from	the	Excel	Regression	command	in	the	Analysis	ToolPak.	See	the	text	for	a	discussion	on	how	to	interpret	the	information	in	these	tables.	There	are	three	parts	to	Excel	summary	of	a	regression	analysis.	At	the	top	of	figure	5.6.2	is	a	table	of	regression	statistics.	The	standard	error	is	the
standard	deviation	on	the	regression,	sr.	Also	of	interest	is	thefor	Multiple	R,	which	is	the	correlation	coefficient	of	the	model,	r,	a	term	with	which	you	can	already	be	familiar.	The	correlation	coefficient	is	a	measure	of	the	measure	in	which	the	regression	model	explains	the	variation	in	y.	The	r	values	range	from	-1	to	+1.	TheThe	correlation
coefficient	is	Ã,Â	±	1,	the	better	the	model	explains	the	data.	A	correlation	coefficient	of	0	means	that	there	is	no	relationship	between	X	and	Y.	In	the	development	of	calculations	for	linear	regression,	we	have	not	considered	the	correlation	coefficient.	There	is	a	reason	for	this.	For	most	rectilinear	calibration	curves	the	correlation	coefficient	is	very
close	to	+1,	typically	0.99	or	higher.	It	tends,	however,	to	place	too	much	confidence	in	the	meaning	of	the	correlation	coefficient,	and	to	assume	that	a	R	greater	than	0.99	means	that	the	linear	regression	model	is	appropriate.	Figure	5.6.3	provides	a	useful	counterexample.	Although	the	regression	line	has	a	correlation	coefficient	of	0.993,	the	data
is	clearly	curved.	The	lesson	to	take	home	here	is	simple:	don't	fall	in	love	with	the	correlation	coefficient!	Figure	5.6.3:	Example	of	application	of	a	straight	line	(in	red)	to	curvilinear	data	(in	blue).	The	second	table	of	figure	5.6.2	is	titled	Anova,	which	is	for	analysis	of	the	variance.	We	will	give	a	look	more	closely	to	Anova	in	Chapter	14.	For	now	it	is
enough	to	understand	that	this	part	of	the	Excel	summary	provides	information	on	the	fact	that	the	linear	regression	model	explains	a	significant	part	of	the	variation	in	the	values	​​of	Y.	The	value	for	F	is	the	result	of	a	test	F	of	the	following	nulle	and	alternative	hypotheses.	H0:	The	regression	model	does	not	explain	the	variation	of	y	ha:	the
regression	model	explains	the	variation	of	y	the	value	in	the	column	for	significance	f	is	the	probability	of	maintaining	the	hypothesis	nothing.	In	this	example,	the	probability	is	(2.5	times	10	^	{-	6}%,	which	is	a	strong	evidence	to	accept	the	regression	model.	As	in	the	case	of	the	correlation	coefficient,	a	low	value	for	the	probability	is	a	probable
result	for	any	calibration	curve,	even	when	the	model	is	inadequate.	The	probability	of	maintaining	the	hypothesis	nothing	for	figure	5.6.3,	for	example,	is	(9.0	times	10	^	{-	7}%).	See	Chapter	4.6	For	a	review	of	the	test	F.	The	third	table	of	figure	5.6.2	provides	a	synthesis	of	the	model	itself.	The	values	​​for	the	coefficients	of	the	model	Â	«The	slope,
(Beta_1),	and	the	intercept	y,	(beta_0)	Â«	are	identified	as	an	intercept	and	with	the	label	for	data	of	the	data	X	axis,	which	in	this	example	is	CSTD.	The	standard	deviations	of	the	coefficients,	(s_	{b_0})	and	(s_	{b_1}),	are	in	the	standard	error	column.	The	T	Stat	column	and	the	p	column	value	are	for	the	following	T	tests.	slope:	(h_0	text	{:}	beta_1
=	0	quad	h_a	text	{:}	beta_1	eq	0)	y-intercept:	(h_0	text	{:}	beta_0	=	0	quad	h_a	text	{	:}	beta_0	EQ	0)	The	results	of	these	T-tests	provide	convincing	tests	that	the	slope	is	not	zero,	but	there	is	no	evidence	that	the	intercepted	y	differ	significantly	from	scratch.	The	95%	confidence	intervals	are	also	shown	for	the	slope	and	the	intercept	y	95%	and
95%	higher.	See	Chapter	4.6	for	a	test	review	t.	A	third	approachA	regression	analysis	consists	in	programming	a	spreadsheet	using	the	integrated	Excel	formula	for	a	Sommation	=	SUM	(first	cell:	last	cell)	and	its	ability	to	analyze	mathematical	equations.	The	resulting	calculation	sheet	is	shown	in	Figure	5.6.4.	Figure	5.6.4:	Computing	sheet
showing	the	formulas	to	calculate	the	slope	and	intercept	Y	for	the	data	of	example	5.4.1.	Shaded	cells	contain	formulas	you	need	to	enter.	Insert	the	formulas	in	cells	from	C3	to	C7	and	in	the	cells	from	D3	to	D7.	Then	enter	the	formulas	for	cells	from	A9	to	D9.	Finally,	insert	the	formulas	in	cells	F2	and	F3.	When	entering	a	formula,	Excel	replaces	it
with	the	resulting	calculation.	The	values	​​of	these	cells	must	comply	with	the	results	of	example	5.4.1.	It	is	possible	to	simplify	the	insertion	of	the	formulas	by	copying	and	pasting.	For	example,	enter	the	formula	in	cell	C2.	Select	Edit:	Copy,	click	and	drag	the	cursor	to	cells	from	C3	to	C7,	and	select	Edit:	Paste.	Excel	automatically	updates	the
reference	of	the	cells.	You	can	use	Excel	to	examine	the	data	and	the	regression	line.	Start	by	tracking	data.	Organize	your	data	in	two	columns,	placing	the	X	values	​​in	the	leftmost	column.	Click	and	drag	data	and	select	Graphs	from	the	tape.	Select	Scatter,	choosing	the	option	without	lines	connecting	points.	To	add	a	regression	line	to	the	chart,
click	on	the	graphics	of	the	chart	and	select	Graph:	Add	trendline	...	from	the	main	men.	Choose	the	linear	model	and	click	OK	to	add	the	line	to	the	graph.	By	default,	Excel	displays	the	regression	line	from	the	first	to	the	last	point.	Figure	5.6.5	shows	the	result	for	figure	data	5.6.1.	Figure	5.6.5:	Excellent	dispersion	graphic	example	showing	data	and
a	regression	line.	Excel	will	also	create	a	graph	of	residual	regression	model	errors.	To	create	the	chart,	build	the	regression	model	using	the	Toolpak	analysis,	as	described	above.	Clicking	on	the	option	for	residual	graphics	is	created	the	graph	shown	in	Figure	5.6.6.	Figure	5.6.6:	Example	of	Excel	graph	of	residual	errors	of	a	regression	model.	The
greater	limit	of	Excel	for	a	regression	analysis	is	that	it	does	not	provide	a	function	to	calculate	uncertainty	when	X	values	​​are	expected.	As	for	this	chapter,	Excel	cannot	calculate	the	uncertainty	for	the	concentration	of	the	analyte,	CA,	given	the	signal	for	a	sample,	SSAMP.	Another	limitation	is	that	Excel	does	not	have	an	integrated	function	for	a
weighted	linear	regression.	However,	it	is	possible	to	program	a	spreadsheet	to	manage	these	calculations.	Exercise	5.6.1	Use	Excel	to	complete	the	regression	analysis	in	the	operation	5.4.1.	Answer	starts	by	entering	the	data	in	an	Excel	spreadsheet,	following	the	format	shown	in	the	5.6.1.	Because	Excel	data	analysis	tools	provide	most	of	the
information	we	need,	we	will	use	it	here.	The	resulting	output,	shown	below,	provides	the	slope	and	intercept	y,	together	with	the	respective	95%	confidence	intervals.	Excel	does	not	provide	a	function	to	calculate	uncertainty	in	The	analyte	concentration,	AC,	given	the	signal	for	a	sample,	ssamp.	You	have	to	complete	these	calculations	by	hand.	With
a	ssamp	of	0.114,	we	find	that	CA	is	\	[c_a	=	\	frac	{s_	{samp}	–	b_0}	{b_1}	=	\	frac	{0.114	–	0.0014}	{29.59	\	text	{m}	^	{-	1}}}}	=	3.80	\	times	10	^	{-	3}	\	text	{m}	Oncer	\]	in	CA	is	\	[s_	{c_a}	=	\	frac	{1.996	\	time	10	^	{-	3}}	{29.59}	\	SQRT	{\	frac	{1}	{3}	+	\	frac	{1}	{6}	+	\	frac	{	(0.114	–	0.1183)	^	2}	{	(29.59)	^	2	\	times	4.408	\	times	10	^
{-	5})	}}	=	4.772	\	Times	10	^	{-	5}	Oncer	\]	and	the	95%	confidence	interval	is	\	[\	mu	=	c_a	\	pm	ts_	{c_a}	=	3.80	\	times	10	^	{-	3}	\	pm	\	{2.78	\	times	(4.772	\	Times	10	^	{-	5})	\}	Oncer	\]	\	[\	mu	=	3.80	\	times	10	^	{-	3}	10	^	{-	3}	\	text	{m}	\	pm	0.13	\	times	10	^	{-	3}	\	text	{m}	Oncer	\	]	Page	2	at	a	single	point	we	determine	the	value	of	KA	by
measuring	the	signal	for	a	single	standard	containing	a	known	concentration	of	analyte.	Using	this	value	of	KA	and	our	sample	signal,	we	then	calculate	the	analyte	concentration	in	our	sample	(see	example	5.3.1).	With	only	a	single	determination	of	KA,	quantitative	analysis	using	external	single-point	standardization	is	simple.	Multiple	point
standardization	presents	a	more	difficult	problem.	Consider	the	data	in	Table	5.4.1	for	external	multi-point	standardization.	What	is	our	best	estimate	of	the	relationship	between	SSTD	and	CSTD?	An	attempt	is	made	to	treat	these	data	as	five	separate	single	point	standardizations,	determining	KA	for	each	standard	and	reporting	the	mean	value	for
the	five	tests.	Despite	the	simplicity,	this	is	not	an	appropriate	way	to	deal	with	a	multiple-point	standardization.	Table	5.4.1:	Data	for	a	hypothetical	multi-point	external	standardization	(c_	{std}	\)	(arbitrary	units)	\	(s_	{std}	\)	(arbitrary	units)	\	(k_a	=	s_	{std}	/	c_	{std}	\)	0.000	0.00	â	¬	“0.100	12.36	123.6	0.300	12.36	123.6	0.300	24.83	124.2	0.300
35.83	124.2	0.300	35.91	119.7	0.400	48.79	122.0	0.500	48.79	122.0	0.500	60.42	122.8	Mean	KA	=	122.5	So	why	is	it	inappropriate	to	calculate	an	average	value	for	KA	using	the	data	in	Table	5.4.1?	In	a	single-point	standardization,	we	assume	that	the	reagent	blank	(the	first	row	in	Table	5.4.1)	corrects	for	all	constant	sources	of	determined	error.	If
this	is	not	the	case,	the	value	of	KA	from	a	single	point	standardization	has	a	constant	determining	error.	Table	5.4.2	shows	how	an	incorrect	constant	error	affects	our	determination	of	KA.	The	first	three	columns	show	the	analyte	concentration	in	a	set	of	standards,	CSTD,	the	signal	without	any	source	of	constant	error,	SSTD	and	the	actual	value	of
KA	for	five	standards.	As	we	expect,	the	value	of	KA	is	the	same	for	each	standard.	In	the	fourth	column	we’ll	add	a	fixed	constant	error	+0.50	to	signals	(SSTD)	and.	The	last	column	contains	the	corresponding	apparent	ka	values.	Note	that	we	obtain	a	different	value	of	KA	for	each	standard	and	that	every	apparent	ka	is	greater	than	true	value.	Table
5.4.2:	Effect	of	a	constant	error	determined	on	the	value	of	(k_a)	from	a	a	Standardization	(C_	{STD})	(S_	{STD})	(without	constant	error)	(K_A	=	S_	{STD}	/	C_	{STD})	(actual)	((S_	{STD})	_E	)	(with	constant	error)	1.10	ka	medium	(true)	=	1.00	ka	medium	(apparent)	=	1.23	How	to	find	the	best	estimate	for	the	relationship	between	the	signal	and
the	concentration	of	the	analyte	in	a	standardization	at	multiple	points?	Figure	5.4.1	shows	table	data	5.4.1	Tracked	as	normal	calibration	curve.	Although	the	data	will	certainly	fall	along	a	straight	line,	the	actual	calibration	curve	is	not	intuitively	obvious.	The	process	to	determine	the	best	equation	for	the	calibration	curve	is	called	linear	regression.
Figure	5.4.1:	Normal	data	of	the	calibration	curve	for	hypothetical	external	standardization	to	multiple	points	referred	to	in	Table	5.4.1.	When	a	calibration	curve	is	a	straight	line,	we	represent	it	using	the	following	mathematical	equation	[y	=	beta_0	+	beta_1	x	label	{5.1}],	where	y	is	the	symbol	of	the	analyte,	sstd,	ex	It	is	the	concentration	of	the
analyte,	CSTD.	The	constants	(beta_0)	is,	respectively,	the	calibration	curve	provided	for	the	intercept	y	and	its	expected	slope.	Due	to	the	uncertainty	in	our	measurements,	the	best	we	can	do	is	estimate	the	values	​​of	(beta_0)	and	(beta_1),	which	we	represent	as	B0	and	B1.	The	objective	of	a	linear	regression	analysis	is	to	determine	the	best
estimates	for	B0	and	B1.	How	to	do	this	depends	on	the	uncertainty	of	our	measures.	The	most	common	method	to	complete	the	linear	regression	for	the	equation	ref	{5.1}	includes	three	hypotheses:	that	the	difference	between	our	experimental	data	and	the	regression	line	calculated	is	the	result	of	undetermined	errors	that	affect	the	standard	y
Standard	contributes	in	equal	measure	to	our	estimate	of	the	slope	and	of	the	intercept	y.	For	this	reason	the	result	is	considered	a	non-weighted	linear	regression.	The	second	hypothesis	is	generally	true	due	to	the	central	limit	theorem,	which	we	considered	in	chapter	4.	The	validity	of	the	two	remaining	hypotheses	is	less	obvious	and	it	is	necessary
to	evaluate	them	before	accepting	the	results	of	a	linear	regression.	In	particular	the	first	hypothesis	is	always	suspected	because	there	is	certainly	some	permanent	error	in	the	size	of	X.	When	preparing	a	calibration	curve,	however,	it	is	not	rare	to	find	that	the	uncertainty	in	the	signal,	SSTD,	is	significantly	higher	than	the	uncertainty	in	the
concentration	of	the	analyte,	CSTD.	In	such	circumstances,	the	first	hypothesis	is	generally	reasonable.	To	understand	the	logic	of	a	linear	regression,	consider	the	example	shown	in	Figure	5.4.2,	which	shows	three	data	points	and	two	possible	which	would	reasonably	explain	the	data.	How	do	we	decide	how	well	these	straight	lines	fit	the	data,	and
how	do	we	determine	the	best	straight	line?	Figure	5.4.2:	Illustration	showing	three	data	points	and	two	possible	straight	lines	that	could	explain	the	data.	The	purpose	of	a	linear	regression	is	to	find	the	mathematical	model,	in	this	case	a	straight	line,	that	best	explains	the	data.	Let’s	focus	on	the	solid	line	in	Figure	5.4.2	.	The	equation	for	this	line	is
\[\hat{y}	=	b_0	+	b_1	x	\label{5.2}\]	where	b0	and	b1	are	estimates	for	the	y-intercept	and	the	slope,	and	\	(\hat{y}\)	is	the	expected	value	of	y	for	any	value	of	x.	Since	we	assume	that	all	uncertainties	are	the	result	of	undetermined	errors	in	y,	the	difference	between	y	and	\	(\hat{y}\)	for	each	value	of	x	is	the	residual	error,	r,	in	our	mathematical
model.	\[r_i	=	(y_i	â​​	\hat{y}_i)	number\]	Figure	5.4.3	shows	the	residual	errors	for	the	three	data	points.	The	smaller	the	total	residual	error,	R,	which	we	define	as	\[R	=	\sum_{i	=	1}^{n}	(y_i	â​​	\hat{y}_i)	^2	\label{5.3}\],	the	better	the	correspondence	between	the	straight	line	and	the	data.	In	a	linear	regression	analysis,	we	look	for	the	values	of	b0
and	b1	that	give	the	least	total	residual	error.	The	reason	for	squaring	individual	residual	errors	is	to	prevent	a	positive	residual	error	from	canceling	out	a	negative	residual	error.	You’ve	already	seen	this	in	the	equations	for	the	standard	deviations	of	the	sample	and	the	population.	You	can	also	see	from	this	equation	why	a	linear	regression	is
sometimes	called	the	least	squares	method.	Figure	5.4.3:	Illustration	showing	the	evaluation	of	a	linear	regression	where	all	uncertainty	is	assumed	to	be	the	result	of	indeterminate	errors	in	y.	The	blue	dots,	y	,	are	the	original	data	and	the	red	dots,	yi	,	are	the	values	predicted	by	the	regression	equation,	\	(\hat{y}	=	b_0	+	b_1	x\).The	smaller	the
total	residual	error	(Equation	\ref{5.3}),	the	better	the	correspondence	of	the	straight	line	with	data.	Although	we	will	not	formally	develop	mathematical	equations	for	linear	regression	analysis,	derivatives	can	be	found	in	many	standard	statistical	texts	[See,	for	example,	Draper,	N.	R.;	Smith,	H.	Applied	Regression	Analysis,	3rd	ed.;	Wiley:	New
York,	1998].	The	resulting	equation	for	the	slope,	b1,	is	\[b_1	=	\frac	{n	\sum_{i	=	1}^{n}	x_i	y_i	â​​	\sum_{i	=	1}^{n}	x_i	\sum_{i	=	1}^{n}	y_i}	{n	\sum_{i	=	1}}	{n}	x_i	=	1}	2	â​​	\left	(\sum_{i	=	1}^{n}	x_i	\right)	^2}	\label{5.4}\]	and	the	equation	of	the	y,	b0,	is	\[b_0	=	\frac	{\sum_{i	=	1}^{n}	y_i	â​​	b_1	\sum_{i	=	1}^{n}	x_i}	{n}	\label{5.5}\]
Although	the	equations	\ref{5.4}	and	\ref{5.5}	look	formidable,	you	need	to	evaluate	only	the	following	four	summations	\[\sum_{i	=	1}^{n}	x_i	\quad	\sum_{i	=	1}^{n}	y_i	\ququad	\sum_{i	=	1}^{n}	x_i	y_i	\quad	\sum_{i	=	1}^{n}	x_i^2	number\]	to	perform	a	linear	regression	analysis	based	on	this	model.	model.Save	time	and	to	avoid	tedious
calculations,	learn	how	to	use	one	of	these	tools	(and	see	Section	5.6	for	details	on	completing	a	linear	regression	analysis	using	Excel	and	R.).	For	illustrative	purposes,	the	required	calculations	are	shown	in	detail	in	the	following	example.	Equation	\	Ref	{5.4}	and	equation	\	ref	{5.5}	are	written	in	terms	of	general	variables	x	and	y.	As	you	work
through	this	example,	remember	that	x	corresponds	to	CSTD	and	Y	corresponds	to	SSTD.	EXAMPLE	5.4.1	Using	data	from	Table	5.4.1,	determine	the	relationship	between	SSTD	and	CSTD	using	an	integrated	linear	regression.	Solution	Let’s	start	by	setting	up	a	table	to	help	us	organize	the	calculation.	\	(x_i	\)	\	(y_i	\)	\	(x_i	y_i	\)	0.000	0.00	0.000
0.000	0.100	12.36	1.236	0.010	0.200	24.83	4.966	0.040	0.300	35.91	10.773	0.090	0.400	48.79	19.516	0.160	0.500	60.42	30.210	0.250	Value	addition	In	each	column	gives	\	[\	sum_	{i	=	1}	^	{n}	x_i	=	1,500	\	quad	\	sum_	{i	=	1}	^	{n}	y_i	=	182.31	\	quad	\	sum_	{i	=	1}	^	{n}	x_i	y_i	=	66,701	\	quad	\	sum_	{i	=	1}	^	{n}	x_i	^	2	=	0.550	onumber	\]
Replace	these	values	with	equation	\	ref	{5.4}	and	equation	\	ref	{f	{	5.5.5},	we	find	that	the	slope	and	the	y-intercept	are	\	[B_1	=	\	frac	{	(6	\	times	66.701)	–	(1,500	\	times	182.31)	}	{	(6	\	times	0.550)	–	(1,500)	^	2}	=	120.706	\	about	120.71	Onumber	\]	\	[B_0	=	\	frac	{182.31	–	(120,706	\	times	1,500)	}	{6}	=	0.209	\	about	0.21	Oz.	\]	The
relationship	between	the	signal	and	the	analyte,	then,	is	\	[s_	{std}	=	120.71	\	times	c_	{std}	+	0.21	Oz.	\]	For	now	we	keep	two	decimal	points	to	match	the	number	of	decimal	places	in	the	signal.	The	resulting	calibration	curve	is	shown	in	Figure	5.4.4.	Figure	5.4.4:	Calibration	Curve	for	Data	in	Table	5.4.1	and	Example	5.4.1.	As	shown	in	Figure
5.4.4,	because	of	the	indeterminate	errors	in	the	signal,	the	regression	line	might	not	pass	through	the	exact	center	of	each	data	point.	The	cumulative	deviation	of	our	regression	line	data	–	that	is,	the	total	residual	error	–	is	proportional	to	the	uncertainty	in	the	regression.	We	call	this	uncertainty	the	standard	deviation	on	regression,	SR,	which	is
equal	to	\	[s_r	=	\	sqrt	{\	frac	{\	sqrt	{\	frac	{\	sum_	{i	=	1}	^	{n}	\	left	(y_i	–	\	hat	{y}	_i	\	Right)	^	2}	{n	–	2}}	{n-2}}}}}	\	label	{5.6}	\]	Where	Yi	is	the	experimental	value	Ith,	and	\	(\	hat	{y}	_i	\)	is	the	corresponding	value	predicted	by	the	regression	line	in	equation	\	ref	{5.2}.	Note	that	the	denominator	of	the	equation	\	def	{5.6}	indicates	that
our	regression	analysis	has	n	–	2	degrees	of	freedom	“we	lose	two	degrees	of	freedom	because	we	use	two	parameters,	slope	and	intercept	Y,	to	calculate	\	(\	cap	{y}	_i	\).	Regression	standard	deviation	(Equation	\	ref	{5.6})	and	standard	deviation	for	a	sample	(Equation	4.1.1)?	A	more	useful	representation	of	uncertainty	in	our	regression	is	to
consider	the	effect	of	indeterminate	errors	on	the	slope,	B1	and	the	intercept	Y,	B0,	which	we	express	as	standard	deviations.	\	[s_	{b_1}	=	=	}===========================	We	use	these	standard	deviations	to	establish	confidence	intervals	for	the	predicted	slope,	\	(\beta_1\),	and	the	predicted	y-intercept,	\	(\beta_0\)	\[\beta_1	=	b_1
\pm	t	s_{b_1}	\label{5.9}\]	\[\beta_0=	b_0\pm	t	s_{b_0}	\label{5.	Note	that	Equation	\ref{5.9}	and	Equation	\ref{5.10}	do	not	contain	a	\	(\sqrt{n})	^{-1}\)	factor	because	the	confidence	interval	is	based	on	a	single	regression	row.	Example	5.4.2	Calculate	95%	confidence	intervals	for	slope	and	intercept	example	5.4.1	.	Solution	Let’s	start	by
calculating	the	standard	deviation	on	the	regression.	To	do	this	we	need	to	calculate	the	above	signals,	\	(\hat{y}_i\),	using	the	slope	and	y-intercept	from	example	5.4.1	,	and	the	squares	of	the	residual	error,	\	(y_i	–	\hat{y}_i)	^2\).	Using	the	last	standard	as	an	example,	we	find	that	the	predicted	signal	is	\[\hat{y}_6	=	b_0	+	b_1	x_6	=	0.209	+
(120.706	\times	0.500)	=	60.562	onumber\]	and	that	the	remaining	error	square	is	\[	(y_i	–	\hat{y}_i)	^2	=	(60.appro	–	60.02x	\	(x_i\)	\	(y_i\)	\	(\)	\	(\hat{y}_i\)	\	(\)	\\\\)	\	(\left	(y_i	–	\hat{y}_i	\right)	^2\)	0.000	0.00	0.209	0.0437	0.100	12.36	12.280	0.0064	0.200	24.350	0.2304	0.300	Adding	together	the	data	in	the	last	column	gives	the	numerator	of
Equation	\ref{5.6}	as	0.6512;	hence,	the	standard	deviation	on	the	regression	is	\[s_r	=	\sqrt{\frac	{0.6512}	{6	–	2}}	=	0.4035	onumber\]	Next	we	calculate	the	standard	deviations	for	p	trend	and	y	intercept	using	Equation	\ref{5.7}	and	Equation	\ref{5.8}.	The	values	of	the	summation	terms	are	from	Example	5.4.1	.	\[s_{b_1}	=	\sqrt{\frac	{6	\times
(0.4035)	^2}	{	(6	\time	0.550)	–	(1.500)	^2}}	=	0,65	onumber\]	\[s_{b_0}	=	\sqrt{\frac	{	(0.4035)	^2	\time	0.550}	{	(6	\time	0.550)	–	(1.500)	^2}}	=	0.292	onumber\]	Finally,	the	95%	confidence	intervals	(\	(\alpha	=	0.05\),	4	degrees	of	freedom)	for	slope	and	y-intercept	are	\[\beta_1	=	b_1	\pm	ts_{b_1}	=	120.706	\pm	(2.78	\times	0.965)	=	120.7
\pm	2.7	onumber\]	\[\beta_0	=	b_0	\pm	ts_{b_0}	=	0.209	\pm	(2.78	\time	0.292)	=	0.2	\pm	0.80	onumber\]	where	t	(0.05,	4)	from	Appendix	4	is	2.78.	The	standard	deviation	on	the	regression,	sr,	suggests	that	the	signal,	Sstd,	is	accurate	to	one	decimal	point.	For	this	reason,	the	slope	and	the	intercept	are	reported	to	a	single	decimal	point.	To
minimize	uncertainty	in	a	calibrationSlope	and	Y-Intercept,	we	evenly	space	our	standards	on	a	wide	range	of	analytical	concentrations.	An	in-depth	examination	of	the	equation	ref	{5.7}	and	the	equation	ref	{5.8}	help	us	understand	why	it	is	true.	The	denominators	of	both	equations	include	the	term	(sm_	{i	=	1}	^	{n}	(x_i	-	overline	{x}	_i)	^	2).
Biggest	is	the	value	of	this	term,	which	we	carry	out	by	increasing	the	range	of	x	around	its	average	value	"smaller	the	standard	deviations	in	slope	and	interception	y.	Furthermore,	to	minimize	uncertainty	in	Y	interception,	it	helps	to	decrease	the	value	of	the	term	(sm_	{i	=	1}	{n}	x_i)	in	equation	ref	{5.8},	which	we	are	including	the	standards	For
lower	concentrations	of	the	analyte.	Once	we	have	our	regression	equation,	it	is	easy	to	determine	the	concentration	of	analytes	in	a	sample.	When	we	use	a	normal	calibration	curve,	for	example,	measure	the	signal	for	our	sample,	SSAMP,	and	we	calculate	the	concentration	of	the	analyte,	CA,	using	the	regression	equation.	[C_a	=	frac	{s_	{samp}	-
b_0}	{b_1}	label	{5.11}	that	is	less	obvious	is	how	to	report	a	trust	interval	for	ca	expressing	uncertainty	in	our	analysis.	To	calculate	a	trusted	interval	we	need	to	know	the	standard	deviation	in	the	concentration	of	the	analyte,	which	is	given	by	the	following	equation	[s_	{c_a}	=	frac	{s_r}	{b_1}	sqrt	{frac	{1}	{m}	+	frac	{1}	{n}	+	frac	{left
(soverline	{s}	-	overline	{c}	_	{std}	right)	^	2}}	label	{5.12	}	Where	M	is	the	number	of	replication	we	use	to	establish	the	average	sample	signal,	SSAMP,	N	is	the	number	of	calibration	standards,	SSTD	is	the	average	signal	for	calibration	standards,	and	(C_	{	STD_1})	E	(Overline	{C}	_	{STD})	are	individual	concentrations.	Knowing	the	value	of	(s_
{c_a}),	the	trust	interval	for	the	concentration	of	the	analyte	is	[mu_	{c_a}	=	c_a	pm	t	s_	{c_a}	Onumber	where	(mu_	{C_A}	is	the	expected	value	of	CA	in	the	absence	of	certain	errors,	and	with	the	value	of	t	is	based	on	the	desired	trust	level	en	â	€	"2	degrees	of	freedom.	Equation	Ref	{5.12}	is	written	in	terms	of	a	calibration	experiment.	A	more
general	form	of	the	equation,	written	in	terms	of	X	and	Y,	is	given	here.	[s_	{x}	=	frac	{s_r}	{b_1}	sqrt	{frac	{1}	{m}	+	frac	{1}	{n}	+	frac	{left	({y}	-	overline	{y}}}	2}	{(b_1)}	2	sum_	{i	=	1}	^	{n}	left	(x_i	-	overline	{x}	an	in-depth	examination	of	the	equation	ref	{5.12}	should	convince	you	that	l	'CA	uncertainty	is	smaller	when	the	average
sample	signal,	(overline	{s}	_	{samp}),	is	the	same	as	the	average	signal	for	standards,	(overline	{s}	_	{STD}	-	(b)	Sharaf,	A.;	Illman,	D.	L.;	Kowalski,	B.	R.	Chemometrics,	Wiley-InterScience:	New	York,	1986,	pp.	126-127;	(c)	Committee	of	analytical	methods	Ã	¢	â,¬	Ã	¢	â,¬	å	"uncectures	in	concentrations	estimated	by	calibration	experiments,	Ã	¢
â,¬"	AMC	Technical	Brief,	March	2006.	Example	5.4.3	Three	replicated	analyzes	for	a	sample	containing	an	unknown	concentration	of	analyte,	performance	values	​​for	ssamp	of	29.32,	29.16	and	29.51	(arbitrary	units).	Using	the	results	from	example	5.4.1	and	example	5.4.2,	determine	the	concentration	of	analyte,	CA	and	its	95%	confidence	interval.
Solution	The	average	signal,	(overline	{s}	_	{samp}),	is	29.33,	which,	using	the	equation	ref	{5.11}	and	slope	and	interception	5.4.1,	Due	the	analyzed	"s	concentration	as	[c_a	=	frac	{overline	{s}	_	{samp}	-	b_0}	{b_1}	=	frac	{29.33	-	0.209}	{120.706}	=	0.241	to	calculate	the	standard	deviation	for	the	Â	"¢	s	concentration	{s	{s}	_	{STD}}	{{}}	{}
{}	{2}	(C_	{STD_I}	-	Overline	{C}	_	{	STD})	^	2).	The	first	is	only	the	average	signal	for	calibration	standards,	which,	using	data	in	table	5.4.1,	is	30.385.	Calculation	(}	{i	=	1}	^	{2}	(c_	{std_i}	-	overline	{c}	_	{std})	^	2	{std})	^	2)	seems	to	be	formidable,	but	we	can	simplify	your	calculation	Recognizing	that	this	sum	of	-soles	is	the	numerator	in	a
standard	deviation	equation;	Then,	[sum_	{i	=	1}	^	{n}	(c_	{std_i}	-	overline	{c}	_	{std})	^	2	=	(s_	{c_	{std}})	^	2	times	(n	-	1)	Oncer,	where	(s_	{C_	{STD}})	is	the	standard	deviation	for	the	analyte	concentration	in	calibration	standards.	Using	data	in	Table	5.4.1	We	find	that	(s_	{c_	{STD}}})	is	0.1871	and	[sum_	{i	=	1}	^	{n}	(c_	{std_i}	-
overline	{c	}	_	{STD})	^	2	=	(0.1872)	^	2	times	(6	-	1)	=	0.175	Oncer,	replacement	of	known	values	​​in	the	equation	ref	{5.12}	=	"0.4035	c_a}	=	}	{120.706}	sqrt	{frac	{1}	{3}	+	frac	{1}	{6}	+	frac	{(29.33	-	30.385)	^	2}	{(120.706)	^	2	times	0.175}}	=	0.0024	Finally,	the	95%	confidence	interval	for	4	degrees	of	freedom	is	[mu_	{c_a}	=	c_a	pm
ts_	{c_a}	=	0.241	pm	(2.78	times	0.0024)	=	0.241	pm	0.007	oncer	Figure	5.4.5	shows	the	calibration	curve	with	curves	that	show	the	95%	confidence	interval	for	approx.	Figure	5.4.5:	Example	of	a	normal	calibration	curve	with	a	confidence	interval	superimposed	for	the	concentration	of	the	analyte.	The	points	in	blue	are	the	original	data	from	Table
5.4.1.	The	black	line	is	the	normal	calibration	curve	determined	in	Example	5.4.1.	The	red	lines	show	the	95%	confidence	interval	for	CA	by	assuming	a	single	determination	of	the	SSAMP.	In	a	standard	addition	we	determine	the	concentration	of	the	analyte	extrapolating	the	calibration	curve	to	the	X	interception.	In	this	case	the	value	of	CA	is	[C_a	=
x	text	{-ertercept}	=	frac	{-b_0}	Oncer	and	the	standard	deviation	in	CA	is	\	[s_	{c_a}	=	\	frac	{s_r}	{B_1}	\	sqrt	{\	frac	{1}	{n}	+	\	frac	{(\	overline	{s}	_	{std}}	{B_1)}{\sum_	{i	=	1}	{n}	{n}(C_	{std_i})}of	standard	additions	(including	the	sample	without	additional	standard),	and	\(\overline{S}_{std}\)	is	the	average	signal	for	standard	n.	Since
the	concentration	of	analyte	by	extrapolation	is	determined,	rather	than	by	interpolation,	\(s_{C_A}\)	for	the	standard	addition	method	is	generally	larger	than	a	normal	calibration	curve.	Exercise	5.4.1	Figure	5.4.2	shows	a	normal	calibration	curve	for	the	quantitative	analysis	of	Cu2+.	Here	are	the	data	for	the	calibration	curve.	[Cu2+]	(M)
Absorption	0	0	\(1.55	\times	10^{-3}\)	0.050	\(3.16	\times	10^{-3}\)	0.093	\(4.74	\times	10^{-3}\)	0.143	\(6.34	\times	10^{-3}\)	0.188	\(7.92	\time	10^{-3}\)	If	three	replicated	samples	give	a	0.114	Ssamp,	what	is	the	concentration	of	analytics	in	the	sample	and	its	95%	confidence	interval?
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Adding	the	values	in	each	column	gives	\[\sum_{i	=	1}^{n}	x_i	=	2.371	\times	10^{-2}	\quad	\sum_{i	=	1}^{n}	y_i	=	0.710	\quad	\sum_{i	=	1}^{n}	x_i	=	4.110	\time	10^{-3}	\quad
\sum_{i	=	1}^{n	When	we	replace	these	values	in	Equation	\ref{5.4}	and	Equation	\ref{5.5},	we	find	that	the	gradient	and	interception	y	are	\[b_1=\frac	{6	\times	(4.110	\37times	10^{-3})	-	(2.371	\times	10^{-2}\times	0.710}	{6	\times	(1.378	\stime	To	calculate	95%	confidence	intervals,	we	must	first	determine	the	standard	deviation	on
regression.	The	following	table	helps	us	organize	the	calculation.	\5(x_i\)\(y_i\)\(\hat{y}_i\)\(y_i_}^{_i}	}	0,000	0,000	0.0015	\(2.250	\time	10^{-6}\)\)\1.5(1.55time	10^{-3}\)	0.050	0.0473	\	Adding	together	the	data	in	the	last	column	gives	the	Equation	\5	The	standard	deviation	on	regression,	therefore,	is	\[s_r	=	\sqrt{\frac	{1.596	\times{6	â	€	"2}}	=
1.997	Times	10	^	{-	3}	Number	subsequently,	we	must	calculate	the	standard	deviations	for	the	slope	and	the	intercept	Y	using	the	equation	ref	{5.7}	and	the	equation	™	Equation	ref	{5.8}.	[s_	{b_1}	=	sqrt	{frac	{6	times	(1.997	2}	{6	time	(1.378	time	10	{-	4})	â	€	"(2.371	Time	10	^	{-	2}	)	^	2}}	=	0.3007	in	Number	^^^^^^^^^	{-4})}	{6	times
(1.378	times	10	^	{-	4})	â	€	"(2.371	times	10	^	{-	2})	^	2}}	=	1.441	Times	10	^	{-	3}	Number	and	USALS	To	calculate	the	95%	confidence	intervals	for	the	slope	and	the	intercept	y	[beta_1	=	b_1	PM	TS_	{B_	1}	=	29.57	PM	(2.78	time	0.3007)	=	29.57	text	{m}	^	{-	1}	0.84	text	{m}	^	{-	1}	Number]	[beta_0	=	b_0	pm	ts_	{b_0}	=	0.0015	pm	(2.78
TIME	1.441	TIME	10	^	{-	3})	=	0.0015	pm	0.0040	Number	with	an	average	SSAMP	of	0.114,	the	concentration	of	the	analyte,	CA,	is	[C_A	=	Frac	{s_	{SAMP	}	â	€	"b_0}	{b_1}	=	frac	{0.114	â	€	œ	0.0015}	{29.57	text	{m}	^	{-	1}}	=	3.80	Times	10	^	{-	3}	text	{m}	Number	The	standard	CA	deviation	is	[s_	{c_a}	=	frac	{1.997	times	10	^	{-	3}}
{29.57}	sqrt	{frac	{1}	{3}	+	frac	{1}	{6}	+	Frac	{(0.114	â	€	œ1	0.1183)	^	2}	{(29.57)	^	2	Times	(4.408	times	10	^	{-	5})}	=	4.778	Times	10	^	{-	5}	Number	and	the	95%	confidence	interval	is	[MU	=	C_A	PM	T	S_	{C_a}	=	3.80	Times	10	^	{-	3}	pm	{2.78	Times	(4.778	Times	10	^	{-	5})	}	Text	{m}	PM	0.13	Times	10	^	{-	3}	text	{m}	Number	You
should	never	accept	the	result	of	a	linear	regression	analysis	without	evaluating	the	validity	of	the	model.	Perhaps	the	simplest	way	to	evaluate	a	regression	analysis	is	to	examine	residual	errors.	As	we	have	seen	earlier,	the	residual	error	for	a	single	calibration	standard,	RI,	is	[R_I	=	(y_i	â	€	"HAT	{Y}	_I)	Number	if	the	regression	model	is	valid,	Then
residual	errors	should	be	randomly	distributed	on	an	average	residual	error	of	zero,	without	any	apparent	trend	towards	minor	or	greater	residue	errors	(figure	5.4.6	a).	Trends	such	as	those	of	Figure	5.4.6	B	and	Figure	5.4.6	C	show	that	at	least	one	of	the	model	hypotheses	is	incorrect.	For	example,	a	trend	towards	larger	residual	errors	at	higher
concentrations,	figure	5.4.6	B,	suggests	that	undetermined	errors	that	influence	the	signal	are	not	independent	of	the	concentration	of	the	analyte.	Figure	5.4.6	C,	residual	errors	are	not	random,	which	suggests	that	we	cannot	model	data	using	a	linear	report.	The	regression	methods	for	the	last	two	cases	are	discussed	in	the	following	sections.
Figure	5.4.6:	Graphs	of	the	residual	error	in	the	signal,	SSTD,	depending	on	the	concentration	of	the	analyte,	CSTD,	for	a	non-weighted	linear	regression	model.	The	red	line	shows	a	residual	error	of	zero.	The	distribution	of	residual	errors	referred	to	in	letter	a)	indicates	the	adequacy	of	the	non-weighted	linear	regression	model.	The	increase
residual	errors	referred	to	in	point	(b)	for	higher	analyte	concentrations	suggest	that	a	weighted	weighted	line	It	is	more	appropriate	for	(C),	the	curved	residue	model	suggests	that	a	linear	model	is	inappropriate;	Linear	regression	with	a	quadratic	model	could	produce	a	better	fit.	Exercise	5.4.2	Use	of	results	from	exercise	5.4.1,	build	a	residual
texture	and	explains	its	meaning.	Answer	To	create	a	residual	texture,	we	need	to	calculate	the	remaining	error	for	each	standard.	The	following	table	contains	relevant	information.	(x_i)	(y_i)	(y__}	_i)	^	{-	3}	0,050	0.0473	0.0027	(3.16	times	10	^	{-	3}	0.093	0.0949	Ã	¢	â,¬	"0.0019	(4.74	times	10	^	{-	3})	0.143	0.1417	0	,	0013	(6.34	times	10	^	{-	3}
0.188	0.1890	Ã	¢	â,¬	"0.0010	(7.92	times	10	^	{-	3})	0.236	0.2357	0.0003	The	following	figure	shows	a	graph	of	the	resulting	residual	errors	.	The	residual	errors	appear	random,	although	they	alternate	in	the	sign	and	that	they	show	no	significant	dependence	on	the	concentration	of	the	analyte.	Taken	together,	these	observations	suggest	that	our
regression	model	is	appropriate.	Our	treatment	of	linear	regression	at	this	point	it	assumes	that	the	undetermined	errors	that	affect	Y	are	independent	of	the	value	of	X.	If	this	hypothesis	is	false,	as	in	the	case	of	data	in	Figure	5.4.6	B,	so	we	must	include	the	variance	for	each	value	of	Y	in	ours	determination	of	Y,	B0	and	slope	interception,	B1;	then
[b_0	=	frac	{sm_	{i	=	1}	^	{n}	w_i	y_i	-	b_1	sm_	{i	=	1}	^	{n}	w_i	x_i}	{n}	label	{5.13}]	[b_1	=	frac	{n}	{i	=	1}	^	{n}	w_i	x_i	y_i	-	sum_	{i	=	1}	^	{n}	w_i	x_i	sum_	{i	=	1}	{n}	w_i	y_i}	{n	sum_	{i	=	1}	^	{n}	w_i	x_i	^	2	-	left	(sum_	{i	=	1}	{n}	w_i	x_i	right)	^	2}	label	{5.14}	where	wi	is	a	factor	of	weighting	explaining	the	variance	in	Yi	[w_i	=	frac
{n	(s_	{y_i})	^	{-	2}}	{m_	{i	=	1}	{n}	(s_	{y_i})	^	{-	2}}	label	{5.15}	and	(s_	{y_i})	is	the	standard	deviation	for	yi.	In	a	weighted	linear	regression,	the	contribution	of	each	pair	of	XY	to	the	regression	line	is	inversely	proportional	to	the	precision	of	Yi;	That	is,	the	more	precise	the	value	of	Y,	the	greater	its	contribution	to	regression.	Example	5.4.4
The	following	are	the	data	for	external	standardization	in	which	SSTD	is	the	standard	deviation	for	three	replicas	signal	determinations.	This	is	the	same	data	used	in	Example	5.4.1	with	more	information	on	standard	deviations	in	the	signal.	(C_	{STD})	(arbitrary	units)	(s_	{STD})	(arbitrary	unit)	0.000	0.00	0.02	0.100	12.36	0.02	0.200	24.83	0.07
0.300	35.91	0.13	0.400	48.79	0.32	0.500	60.42	0.33	Determines	the	calibration	curve	equation	using	a	weighted	linear	regression.	While	working	through	this	example,	remember	that	x	corresponds	to	CSTD	and	that	Y	matches	SSTD.	Solution	Let's	start	A	table	to	help	calculate	weighting	factors.	(C_	{STD})	(arbitrary	unit)	(s_	{STD})	(arbitrary
units)	(S_	{STD})	^	{-	2})	(W_i	)	0.00	0.00	0.02	2500.00	2.8339	0.100	12.36	0.02	250.00	2.8339	0.200	24.83	0.07	204.08	0.2313	0.2313	35.91	0.13	59,17	0.0671	0,400	48,79	0.22	20,66	0.0234	0.500	60,42	0.33	9,18	0.0104	Together	the	values	of	the	fourth	column	are	obtained	\[\sum_{i	=	1}^{n}	(s_{y_i})	^{-2}	number\]	which	we	use	to	calculate
individual	weights	in	the	last	column.	To	verify	your	calculations,	the	sum	of	individual	weights	must	be	equal	to	the	number	of	calibration	samples,	no.	The	sum	of	entries	in	the	last	column	is	6.0000,	so	it's	all	right.	After	calculating	individual	weights,	we	use	a	second	table	to	help	calculate	the	four	sum	terms	in	the	\ref{5.13}	and	\ref{5.14}
equations.	<	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	The	calibration	equation	is	\[S_{std}	=	122.98	\time
C_{std}	+	0.2	number\]	Figure	5.4.7	shows	the	calibration	curve	for	the	weighted	regression	and	the	calibration	curve	for	the	unweighted	regression	in	example	5.4	1	.	Although	the	two	calibration	curves	are	very	similar,	there	are	slight	differences	in	the	slope	and	in	the	y	intercetta.	In	particular,	the	intercept	y	for	the	linear	weighted	regression	is
closer	to	the	expected	value	of	zero.	As	standard	signal	deviation,	Sstd,	is	less	for	lower	analytic	concentrations,	Cstd,	a	weighted	linear	regression	gives	more	emphasis	to	these	standards,	allowing	better	estimation	of	the	y	intercept.	Figure	5.4.7:	Comparison	of	normal	calibration	curves	do	not	weigh	and	weigh.	See	example	5.4.1	for	details	of
unweighted	linear	regression	and	example	5.4.4	for	details	of	the	weighted	linear	regression.	The	equations	for	calculating	the	confidence	intervals	for	slope,	intercept	y	and	concentration	of	the	analyte	when	using	a	linear	regression	weighted	are	not	so	easy	to	define	as	for	a	linear	regression	not	weighted	[Bonate,	P.	J.	Anal.	Chem.	1993,	65,	1367
[1372].	However,	the	confidence	interval	for	the	concentration	of	the	analyte	reaches	its	optimal	value	when	the	signal	of	the	analyte	is	located	near	the	weighted,	yc	centerpiece	of	the	calibration	curve.	\[y_c	=	\frac	{1}\sum_{i	=	1}^{n}	w_i	x_i	number\]	undetermined	errors	that	affect	a	calibration	curveIn	the	signal	(Y),	therefore	we	must	also
consider	the	regression	model	the	undetermined	errors	that	influence	the	concentration	of	the	analyte	in	calibration	standards	(X).	The	solution	for	the	resulting	regression	line	is	computationally	more	involved	than	that	for	the	weighted	or	weighted	regression	lines.	Although	we	will	not	consider	the	details	in	this	textbook,	you	should	be	aware	that
neglecting	the	presence	of	indefinite	errors	in	x	can	affect	the	results	of	a	linear	regression.	See,	for	example,	the	Committee	of	Analytical	Methods,	Ã	¢	â,¬	å	"Fitting	a	linear	functional	relationship	with	error	data	both	of	both	variables,	Ã	¢	â,¬	AMC	Technical	Brief,	March,	2002),	as	well	as	of	these	additional	resources	of	the	chapter.	A	rectilinear
regression	model,	despite	its	apparent	complexity,	is	the	simplest	functional	relationship	between	two	variables.	What	do	we	do	if	our	calibration	curve	is	curvilinear	...	ie,	if	it's	a	curved	line	instead	of	a	straight	line?	An	approach	is	to	try	to	transform	data	into	a	straight	line.	In	this	way,	logarithms,	exponentials,	mutual,	square	roots	and
trigonometric	functions	were	used.	Log	ground	(Y)	against	X	is	a	typical	example.	These	transformations	are	not	without	complications,	of	which	the	most	obvious	is	that	the	data	with	a	uniform	variance	in	Y	will	not	maintain	that	uniform	variance	after	it	becomes.	It	is	worth	noting	that	the	term	Ã	¢	â,¬	Å	"LinearÃ	¢	â,¬	does	not	mean	a	straight	line.
A	linear	function	can	contain	more	than	one	additive	term,	but	each	end	of	the	genre	has	one	and	a	single	adjustable	multiplicative	parameter.	The	[Y	=	AX	+	BX	^	2	OnBery	function	is	an	example	of	a	linear	function	since	the	terms	X	and	X2	each	include	a	single	multiplicative	parameter,	A	and	B,	respectively.	The	function	[y	=	x	^	b	OnBerry]	is	not
linear	because	B	is	not	a	multiplicative	parameter;	Instead,	it	is	a	power.	This	is	why	you	can	use	linear	regression	to	adapt	to	a	polynomial	equation	to	your	data.	Sometimes	it	is	possible	to	transform	a	non-linear	function	into	a	linear	function.	For	example,	taking	the	register	of	both	sides	of	the	non-linear	function	above	provides	a	linear	function.	[L
log	(Y)	=	b	Log	(X)	Onumber	Another	approach	to	the	development	of	a	linear	regression	model	is	to	adapt	a	polynomial	equation	to	the	data,	such	as	(Y	=	A	+	BX	+	CX	^	2	.	You	can	use	the	linear	regression	to	calculate	the	parameters	A,	B	and	C,	although	the	equations	are	different	from	those	for	the	linear	regression	of	a	straight	line.	If	your	data
cannot	be	mounted	using	a	single	polynomial	equation,	it	may	be	possible	to	adapt	to	the	separate	polynomial	equations	to	the	short	segments	of	the	calibration	curve.	The	result	is	a	single	continuous	calibration	curve	known	as	a	spline	function.	For	details	on	regression	see	(a)	Sharaf,	M.	a.;	Illman,	D.	L.;	Kowalski,	B.	R.	Chemometrics,	Wiley-
IntersCience:	New	York,	1986;	(b)	Deming,	S.	N.;	Morgan,	S.	L.	Experimental	Design:	a	chimometric	approach,	Elsevier:	Amsterdam,	1987.	Regression	models	in	this	thisonly	apply	to	functions	that	contain	a	single	independent	variable,	such	as	a	signal	that	depends	on	the	concentration	of	the	analyte.	In	the	presence	of	an	interferor,	however,	the
signal	may	depend	on	the	concentrations	of	both	the	analyte	and	the	interferor	\[S	=	k_A	C_A	+	k_I	CI	+	S_{reag}	number\],	where	kI	is	the	sensitivity	of	the	interferor	and	CI	is	the	concentration	of	the	interferor.	Multivariate	calibration	curves	are	prepared	using	standards	containing	known	quantities	of	analyte	and	interferer	and	modeled	using
multivariate	regression.	See	Beebe,	K.	R.;	Kowalski,	B.	R.	Anal.	Chem.	1987,	59,	1007A1017A.	for	more	details,	and	see	this	Additional	Resources	chapter	for	more	information	on	linear	regression	with	errors	in	both	variables,	curvilinear	regression	and	multivariate	regression.	regression.
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